

Efficient Approximate Predictive Inference Under Feedback Covariate Shift with Influence Functions

Drew Prinster, Suchi Saria, Anqi Liu

Johns Hopkins University

Johns Hopkins University

1 Introduction

- 2 Related Work: High-Level Overview
- 3 Technical Background and Proposed Method
- 4 Experimental Results
- 5 Discussion

Two Key Challenges in Conformal Prediction

Introduction

Johns Hopkins University

1. Resource constraints (compute & available data)

- Computational budget: e.g., extensive model retraining
- Data-availability demands: e.g., sample-splitting (which can harm model performance, especially in low data regime)

2. Data shifts

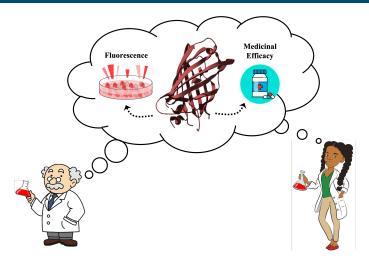
Real world data are often **not exchangeable**!

Common shifts between training & test data distributions can break standard conformal methods.

Our work (today and prior) is at the intersection of these challenges.

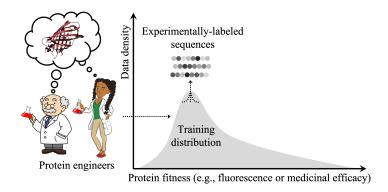
Introduction

Johns Hopkins University



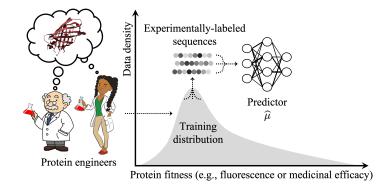
Detailed description in Fannjiang, Bates, Angelopoulos, Listgarten, and Jordan (2022)

Introduction



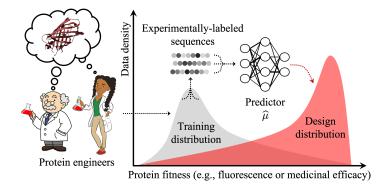
 $\bullet \equiv \bullet$

Introduction



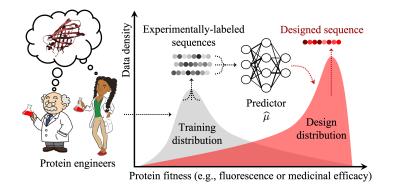
Э

Introduction



Э

Introduction

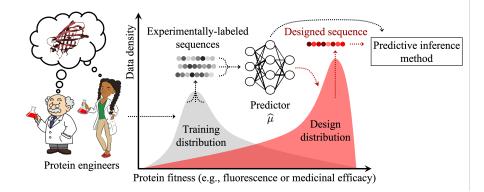


 $\bullet \equiv \bullet$

Э

Introduction

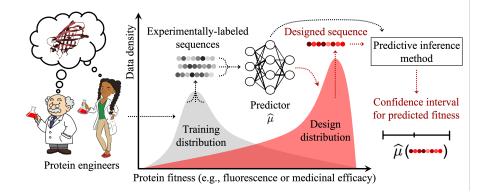
Johns Hopkins University



Э

Introduction

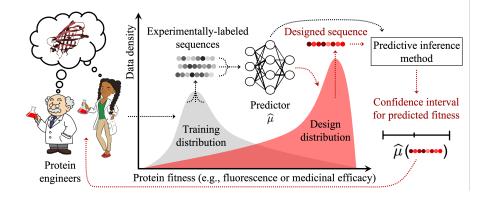
Johns Hopkins University



Э

Introduction

Johns Hopkins University



Efficient Approximate Predictive Inference Under Feedback Covariate Shift with Influence Functions

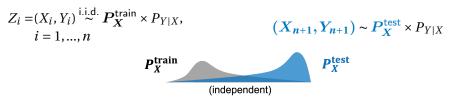
Э

Background: Feedback Covariate Shift (FCS)

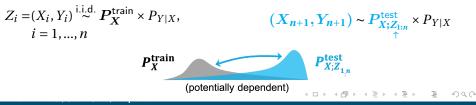
Introduction

Johns Hopkins University

Standard conformal prediction "SCS":



Feedback covariate shift "FCS"(One-shot biomolecular design is an instance; Fannjiang et al. (2022)):



Presentation Outline

Related Work: High-Level Overview

Johns Hopkins University

1 Introduction

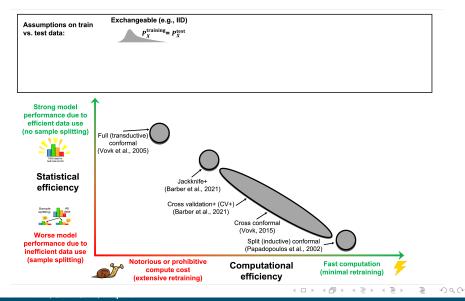
2 Related Work: High-Level Overview

- 3 Technical Background and Proposed Method
- 4 Experimental Results
- 5 Discussion

Related Work: Efficiency Tradeoffs

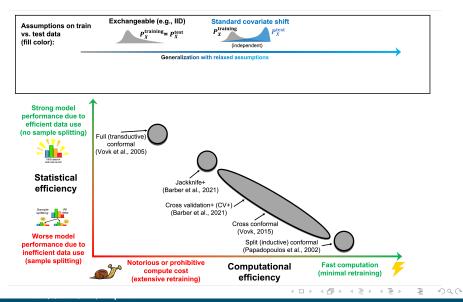
Related Work: High-Level Overview

Johns Hopkins University



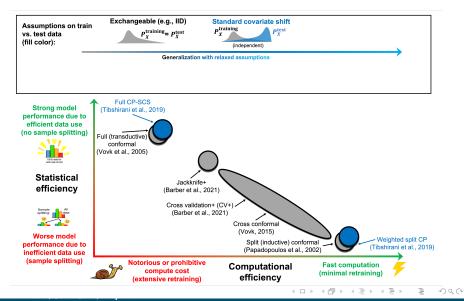
Related Work: High-Level Overview

Johns Hopkins University



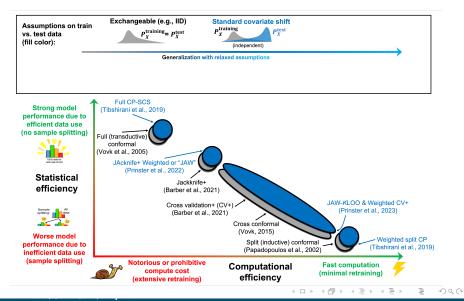
Related Work: High-Level Overview

Johns Hopkins University



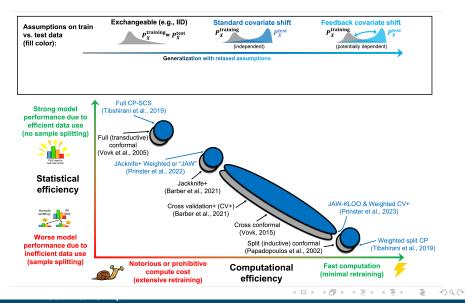
Related Work: High-Level Overview

Johns Hopkins University



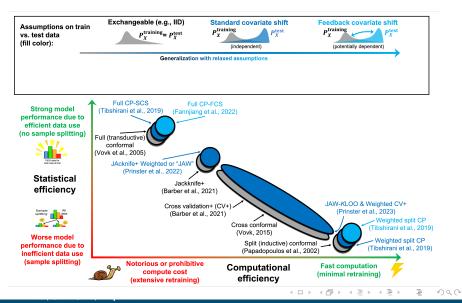
Related Work: High-Level Overview

Johns Hopkins University



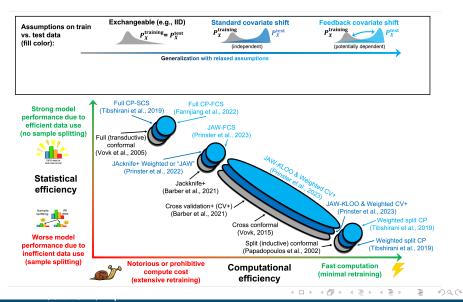
Related Work: High-Level Overview

Johns Hopkins University



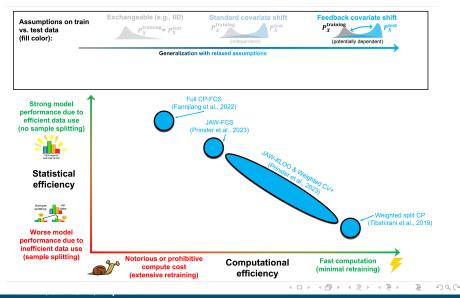
Related Work: High-Level Overview

Johns Hopkins University



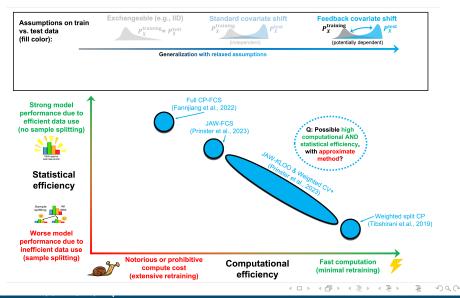
Related Work: High-Level Overview

Johns Hopkins University



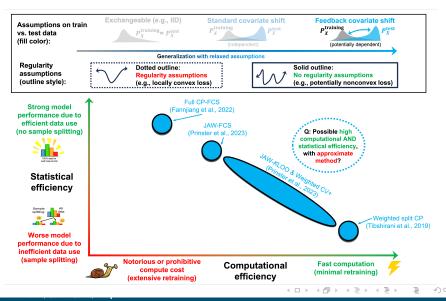
Related Work: High-Level Overview

Johns Hopkins University



Related Work: High-Level Overview

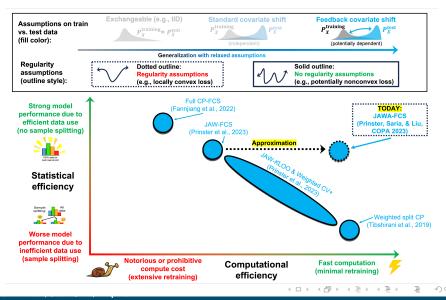
Johns Hopkins University



Proposed Work: Approximation of JAW-FCS

Related Work: High-Level Overview

Johns Hopkins University



Presentation Outline

Technical Background and Proposed Method

Johns Hopkins University

1 Introduction

2 Related Work: High-Level Overview

3 Technical Background and Proposed Method

4 Experimental Results

5 Discussion

∃ ≥ ≥

Background: Jackknife+ Predictive Interval

Technical Background and Proposed Method

Johns Hopkins University

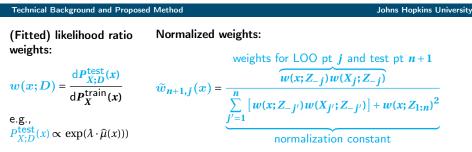
Jackknife+ predictive interval (Barber, Candes, Ramdas, & Tibshirani, 2021):

$$\widehat{C}_{n,\alpha}^{\text{Jackknife+}}(x) = \left[Q_{\alpha} \left(\sum_{j=1}^{n} \frac{1}{n+1} \delta_{\widehat{\mu}_{-j}(x) - |Y_{j} - \widehat{\mu}_{-j}(X_{j})|} + \frac{1}{n+1} \delta_{-\infty} \right), \\ Q_{1-\alpha} \left(\sum_{j=1}^{n} \frac{1}{n+1} \delta_{\widehat{\mu}_{-j}(x) + |Y_{j} - \widehat{\mu}_{-j}(X_{j})|} + \frac{1}{n+1} \delta_{\infty} \right) \right]$$

Some notation:

- $\delta_v :=$ point mass at value v
- $\hat{\mu}_{-j}$:= Leave-one-out (LOO) retrained model
- \implies Requires training n distinct predictors

Background: JAcknife+ Weighted for FCS



JAckknife+ Weighted for Feedback Covariate Shift or "JAW-FCS" (Prinster, Liu, & Saria, 2023):

$$\widehat{C}_{n,\alpha}^{\mathsf{JAW-FCS}}(x) = \left[Q_{\alpha} \left(\sum_{j=1}^{n} \widetilde{w}_{n+1,j}(x) \delta_{\widehat{\mu}_{-j}(x)-|Y_{j}-\widehat{\mu}_{-j}(X_{j})|} + \widetilde{w}_{(n+1)^{2}}(x) \delta_{-\infty} \right), \\ Q_{1-\alpha} \left(\sum_{j=1}^{n} \widetilde{w}_{n+1,j}(x) \delta_{\widehat{\mu}_{-j}(x)+|Y_{j}-\widehat{\mu}_{-j}(X_{j})|} + \widetilde{w}_{(n+1)^{2}}(x) \delta_{\infty} \right) \right]$$

Note: Often $w(\cdot; Z_{-j})$ and $\hat{\mu}_{-j}$ require the same $\Box OO_{a}parameter est. <math>\hat{\theta}_{-j_{O}}$

Background: Influence Functions

Technical Background and Proposed Method

Influence functions (Cook, 1977; Giordano, Jordan, & Broderick, 2019) approximate model parameter changes due to removing (or reweighting) a datapoint via a K-th order Taylor series.

$$\hat{\theta}_{-i}^{\mathsf{IF}\text{-}K} := \hat{\theta} + \sum_{k=1}^{K} \frac{1}{k!} D_{-i}^{k} \hat{\theta}$$

 $D_{-i}^k \hat{\theta} := k$ th order derivative of parameters $\hat{\theta}$ w.r.t. removing point *i* Main computational cost: Computing inverse Hessian

Prior works using IFs with jackknife+:

- Alaa and Van Der Schaar (2020) used higher order IFs to approximate the Jackknife+, but assume i.i.d. data
- Prinster, Liu, and Saria (2022) used higher orders to approximate the JAckknife+ Weighted for *Standard* Covariate Shift (JAW-SCS), but with different weights than in FCS

Proposed Method: JAWA-FCS

Technical Background and Proposed Method

Johns Hopkins University

JAWA-FCS: JAcknife Weighted Approximation for Feedback Covariate Shift (*K*-th order Influence Funcation)

$$\begin{split} \widehat{C}_{n,\alpha}^{\mathsf{JAW-FCS}}(x) \\ &= \left[Q_{\alpha} \Big(\sum_{j=1}^{n} \widetilde{w}_{n+1,j}^{|\mathsf{F}-K}(x) \delta_{\widehat{\mu}_{-j}^{|\mathsf{F}-K}(x)-|Y_{j}-\widehat{\mu}_{-j}^{|\mathsf{F}-K}(X_{j})|} + \widetilde{w}_{(n+1)^{2}}^{|\mathsf{F}-K}(x) \delta_{-\infty} \Big), \\ &\quad Q_{1-\alpha} \Big(\sum_{j=1}^{n} \widetilde{w}_{n+1,j}^{|\mathsf{F}-K}(x) \delta_{\widehat{\mu}_{-j}^{|\mathsf{F}-K}(x)+|Y_{j}-\widehat{\mu}_{-j}^{|\mathsf{F}-K}(X_{j})|} + \widetilde{w}_{(n+1)^{2}}^{|\mathsf{F}-K}(x) \delta_{\infty} \Big) \Big] \end{split}$$

Main idea: Approximating both the weights $w(\cdot; Z_{-j})$ and LOO predictions $\hat{\mu}_{-j}$ using influence functions (IFs)

Johns Hopkins University

1 Introduction

- 2 Related Work: High-Level Overview
- 3 Technical Background and Proposed Method
- 4 Experimental Results

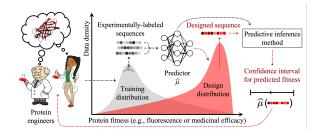
5 Discussion

4 A b

Experiments: Flourescent Protein Design Task

Experimental Results

Johns Hopkins University



Experimental details:

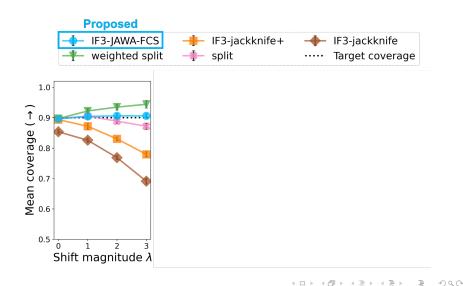
- $\widehat{\mu}$: Small (25 hidden unit) neural network regressor with tanh activation function
- 0.5 L2 regularization parameter
- n = 192 training samples
- K = 3rd order influence function approximation
- $\alpha = 0.1$
- 20 experimental replicates

Runtime results: JAWA-FCS: <3 minutes JAW-FCS: 1 hour 24 minutes

Flourescent Protein Design Results

Experimental Results

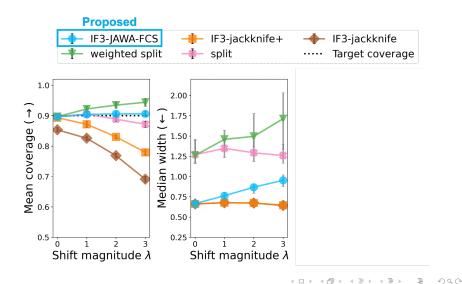
Johns Hopkins University



Flourescent Protein Design Results

Experimental Results

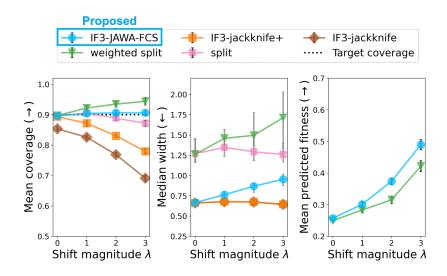
Johns Hopkins University



Flourescent Protein Design Results

Experimental Results

Johns Hopkins University



Johns Hopkins University

1 Introduction

- 2 Related Work: High-Level Overview
- 3 Technical Background and Proposed Method
- 4 Experimental Results
- 5 Discussion

4 A b

- - E - b

Limitations and future directions:

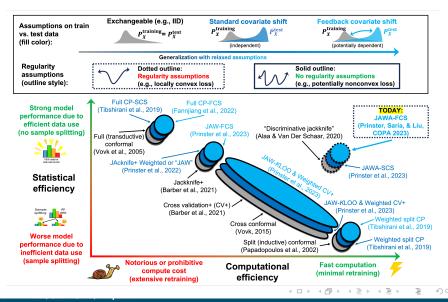
Discussion

- Experiments only with small neural net $\widehat{\mu} \Rightarrow$ See if results scale to larger $\widehat{\mu}$
- Empirical contribution only ⇒ See how IF approximation error would impact guarantees.
- E.g., Giordano et al. (2019) give consistency conditions for LOO IF approximation (but do not consider guarantees for prediction estimates or coverage):
 - + $\hat{\theta}$ is local minimum of objective function
 - Existence and boundedness of higher-order derivatives
 - Objective is strongly convex in neighborhood of $\hat{\theta}$

Today's Contribution in Context (Visually)

Discussion

Johns Hopkins University



- Alaa, A., & Van Der Schaar, M. (2020). Discriminative jackknife: Quantifying uncertainty in deep learning via higher-order influence functions. In *International conference on machine learning* (pp. 165–174).
- Barber, R. F., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive inference with the jackknife+. The Annals of Statistics, 49(1), 486–507.
- Cook, R. D. (1977). Detection of influential observation in linear regression. *Technometrics*, 19(1), 15–18.
- Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved from http://archive.ics.uci.edu/ml

Bibliography II

Fannjiang, C., Bates, S., Angelopoulos, A. N., Listgarten, J., & Jordan, M. I. (2022). Conformal prediction under feedback covariate shift for biomolecular design. *Proceedings of the National Academy of Sciences*, *119*(43), e2204569119.
Giordano, R., Jordan, M. I., & Broderick, T. (2019). A higher-order swiss

army infinitesimal jackknife. arXiv preprint arXiv:1907.12116.

- Papadopoulos, H., Proedrou, K., Vovk, V., & Gammerman, A. (2002). Inductive confidence machines for regression. In *Machine learning: Ecml 2002: 13th european conference on machine learning helsinki, finland, august 19–23, 2002 proceedings 13* (pp. 345–356).
- Poelwijk, F. J., Socolich, M., & Ranganathan, R. (2019). Learning the pattern of epistasis linking genotype and phenotype in a protein. *Nature communications*, *10*(1), 1–11.

- Prinster, D., Liu, A., & Saria, S. (2022). Jaws: Auditing predictive uncertainty under covariate shift. Advances in Neural Information Processing Systems.
- Prinster, D., Liu, A., & Saria, S. (2023). Jaws-x: Addressing efficiency bottlenecks of conformal prediction under standard and feedback covariate shift. *International Conference on Machine Learning*.
 Tibshirani, R. J., Foygel Barber, R., Candes, E., & Ramdas, A. (2019).

Conformal prediction under covariate shift. *Advances in neural information processing systems*, *32*.

- Vovk, V. (2015). Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74(1), 9–28.
- Vovk, V., Gammerman, A., & Shafer, G. (2005). *Algorithmic learning in a random world*. Springer Science & Business Media.

Acknowledgements

Johns Hopkins University

Thank you!!

(日) (四) (日) (日) (日)

Efficient Approximate Predictive Inference Under Feedback Covariate Shift with Influence Functions

E